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INTRODUCTION 

In a book of C. Chapman and T. G. Cowling [1], fluid mechanical equations of a binary gas-mixture are 
described on the basis of Boltzmann equations. But they assume that temperatures of both gases are equal. In our 
paper, it is assumed that temperatures are different for both gases. We put distribution functions ( ) ( )( )21,,, =κκ tf cx

( ) ( ) ( ) ( )

 
for each gas of the mixture and each mass velocity defined by 

 
( ) ( ) ccxc

x
xv 31 dtf

tn
t ,,

,
, κ

κ
κ ∫ ∫ ∫=

c

    (1) 

 
~ ( ) ( )t,( ), and t of Boltzmann equations are changed to The independent variables x , cc κ = xv κ−x  and t . 

Boltzmann equations with the independent variables ( )κcx ~,

( )

and t  can be written. 
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where 
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and 
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where ( )ijb  and  are respectively the impact parameter and the deflection angle between  ( )ijχ ι -and κ -molecules and 
the case for κι = is also valid.  We have assumed that each component of the gas has each number density, each 
pressure, each temperature, each stress tensor, each heat flux and each internal energy: 
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where ( )κN is the number of total degrees of freedom of κ -molecule with translational and internal motions. One of 
the authors (S.K.) obtained dynamics of multi-component plasma by use of the above prescription of macroscopic 
variables from phenomenological point of view[2]. 

EQUATIONS OF CONTINUITY AND EQUATIONS OF MOTION 

We would derive the equations of change of molecular properties of each species, i.e. the moment 
equations of the molecular properties of each species. The molecular properties concerning the κ -gas are the 
followings: 
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which are all summational invariants. For this case, it is noted that 
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The first one comes from the summational invariants for the self-collision, i.e. ’s do not change before 

and after the self-collision. The second shows it is not so for the cross integration between the different species. We 
want to investigate the equation of change of molecular property ( )~( ) ( ) t,, κκφ cx  of theκ -molecule, which is assumed 
to summational invariant: 
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This is the equation of change of molecular property of theκ -gas of the binary gas mixture. We consider (9) for 

. Putting , we can easily have ( ) 1=κφ ( ) 1=κφ
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This is equation of continuity, which is the same form for simple gas. For ( ) ( ) ( )κ

ν
κκφ cm ~= , we have 

 
( ) ( ) ( ) ( ) ( )

( ) ( )
( )

( )

( )

( )
( ) ( ) ( )

( )

( )
( ) ( ) ( ) 0

0000

==
∂
∂

=
∂
∂

=
∂
∂

=
∂
∂

=
∂

∂
−==

λν
κ

λ
κκ

κ
λ

κ
κ

λλν
κκ

κ
λ

κ

λ

κ
κ

λ
λ

κκ
κ
λν

κ
λ

κκκ

δφδφ

φφφφφ

cnm
c

cnm
c

x
c

xt
pcn

~
~

~,~

,~,,,~,
 

 
and the left side of (9) for ( ) ( )κ

ν
κ cm ~  would become 
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The collision term of the right hand side of (9) for ( ) ( )κκ c~m  due to collision between particles of the 

different species for  is only considered: ( ) ( )κκ c~m
 

( ) ( )
( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )κιικικικκκιικκιικκ

ικ
cckcxcxcxcx

kcc

~~g,,~,,~,,~,,~,~ 3
1

32
111~~ dddbktftftftfcm C⎭⎬

⎫
⎩⎨
⎧ −⎟

⎠
⎞⎜

⎝
⎛ ′′

=∫∫∫∫∫∫∫∫  

( )
( ) ( )

( )
( )

( ) ( )
( ) ( ) ( ) ( )

⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠
⎞⎜

⎝
⎛ ⋅⎟

⎠
⎞⎜

⎝
⎛ −+−

+
+=

′′′

=∫∫∫∫∫∫∫∫ kkvvccc
kcc

κικι
ικ

ι
κκ

ικ

~~~
~~ 11

2
mm

mm  

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )′′′′
⎟
⎠
⎞⎜

⎝
⎛ κκιιικικικκκιι cckcxcx ~~g,,~,,~, 3

1
32

1 dJdJdbktftf C
 

( )
( ) ( )

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) (κιικικικκκικκ
ικ

cckcxcxc
kcc

,~ )ι ,,~ g,,~ ~~  3
1

32
11~~ dddbktftfm C∫∫∫∫∫∫∫∫ =

−

 
where ( ) ( ) ( )( ) ( )( )′∂∂= ιιι

11 cck ~~J and ( ) ( ) ( )( ) ( )( )′∂∂= κκκ cck ~~J  
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where ( ) ( ) ( )( ) ( ) ( )κικιικ vvvve −−=  and  is a body force from ( )ικ
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Combining (11) and (13), we have the equations of motion for κ -gas: 
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These are the equations of motion for κ -gas. The last term of the first equation of (14) is a new term, showing the 
force acting from ι to κ and vice versa. 
 

EQUATIONS OF ENERGY 
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The time scale of ( ) tT ∂∂ κ corresponds to that of macroscopic motion macτ . On the other hand, the translational 

energy of a molecule ( ) ( ) ( )( )223 κκ cm  would be in equilibrium of internal energy of the molecule, so that the time 
scale of the thermal equilibrium would be a couple of the mean free time mfτ  between collision.   It could be 
assumed mfmac ττ >> . According the above discussions,  the first term could be written as  ( ) ( ) ( ) ( )( tTNnkB ∂∂ κκκ21  
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where  is the total degrees of freedom of ( )κN κ -molecule so that for monatomic molecules , ( ) 3=κN ( )κι

TK  and 
are also approximately written as ( )κι

VK
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where the term ( ) ( ) ( )( )ικικ TTKT −  and  designate the relaxations of temperature and velocity, and 

 is a polar angle giving the orientation of 

( ) ( ) ( )( 2κιικ vv −VK )
( )ικφ ( )ικe  about an axis parallel to ( )ικe  which takes all values from 0 to π2 . 

 

CONCLUSIONS 

  We have had the hydrodynamic equations for binary gas mixture from Boltzmann equations: 
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where we have new term showing the relaxation due to differences of velocities between both gases in equations of 
motion, by comparing equations for simple gas. Further, new two terms due to the relaxations of velocities and 
temperatures are obtained in equations of energy. ( )ικ

λμη , ( )ικ
TK and ( )ικ

VK  are shown in (13) and (16). These equations 
are similar to the former ones of S.K. in the form. 

SUMMERY 

Hydrodynamic equations for binary gas mixture are derived from Boltzmann equations. Equations of 
continuity for each gas are of the same form for simple gas. Equations of motion have additional terms of velocity 
relaxation in comparison with simple gas, which are linear in difference of velocities of each gas. Energy equations 
have two additional terms, one of which is due to velocity relaxation between two gases. The other is that due to 
temperature relaxation between those. 
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