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Abstract. Velocities, densities, pressures, stresses, temperatures, heat fluxes and internal energies of each gas are
individually defined. Moment equations for mass, momentum and energy of both gases are separately derived on basis of
Boltzmann equations. Momentum equations have velocity relaxation terms between different gases and energy equations
have velocity and temperature relaxation terms between those.
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INTRODUCTION

In a book of C. Chapman and T. G. Cowling [1], fluid mechanical equations of a binary gas-mixture are
described on the basis of Boltzmann equations. But they assume that temperatures of both gases are equal. In our
paper, it is assumed that temperatures are different for both gases. We put distribution functions f(*'>(x,c,t)(,< =12)

for each gas of the mixture and each mass velocity defined by
() _ 1 () 1
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The independent variables x,c and t of Boltzmann equations are changed to x,&™) =c-v¥(x,t) and t .
Boltzmann equations with the independent variables x,¢and t can be written.
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where 5@ and ,@ are respectively the impact parameter and the deflection angle between ;-and x-molecules and

the case for ; =« is also valid. We have assumed that each component of the gas has each number density, each
pressure, each temperature, each stress tensor, each heat flux and each internal energy:
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where N *is the number of total degrees of freedom of x-molecule with translational and internal motions. One of
the authors (S.K.) obtained dynamics of multi-component plasma by use of the above prescription of macroscopic
variables from phenomenological point of view[2].

EQUATIONS OF CONTINUITY AND EQUATIONS OF MOTION

We would derive the equations of change of molecular properties of each species, i.e. the moment
equations of the molecular properties of each species. The molecular properties concerning the x -gas are the
followings:
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which are all summational invariants. For this case, it is noted that
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The first one comes from the summational invariants for the self-collision, i.e. 4*)’s do not change before

and after the self-collision. The second shows it is not so for the cross integration between the different species. We
want to investigate the equation of change of molecular property ¢(")(x,6<“‘),t) of the x -molecule, which is assumed

to summational invariant:
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This is the equation of change of molecular property of the x -gas of the binary gas mixture. We consider (9) for
¢") =1. Putting ¢ =1, we can easily have
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This is equation of continuity, which is the same form for simple gas.  For g = m®)g*), we have
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and the left side of (9) for m ()& (*) would become
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The collision term of the right hand side of (9) for m®*)g

) due to collision between particles of the
different species for m*)¢*) is only considered:
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where 30 ( ) a( )and gl ( ) a( )are Jacobians. Collision dynamics (4) have been used. Thus,
we have apprOX|mater as the right hand side of (9) for m*g&®) due to " (x,cl’ ,tjz £ (x,cl(’) ,t),
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where gl :( ) )/‘ ,:}fw) is a body force from ;-gas to x-gas and
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Combining (11) and (13), we have the equations of motion for x -gas:
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These are the equations of motion for «-gas. The last term of the first equation of (14) is a new term, showing the
force acting from ;to xand vice versa.

EQUATIONS OF ENERGY

We are going to get the energy equations on the basis of (9). Taking ¢*) = (]/Z)m(”)(ﬁ(’”)z , we have
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Thus, we have
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The time scale of aT(*‘)/at corresponds to that of macroscopic motion 7,,.. On the other hand, the translational
energy of a molecule (3/2)m(”)(c(K))2 would be in equilibrium of internal energy of the molecule, so that the time
scale of the thermal equilibrium would be a couple of the mean free time 7+ between collision. It could be
assumed Tma >> 7me . According the above discussions, the first term could be written as (1/2)k,n™'N ) (5T ) /at
+v£f) oT ® /axu) and the second term would be written as o' /ox , , i.e.
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where N is the total degrees of freedom of & -molecule so that for monatomic molecules N®) =3, K!* and
K are also approximately written as
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where the term K)(T ) _T @) and K{*(v* —v®} designate the relaxations of temperature and velocity, and
#") is a polar angle giving the orientation of e about an axis parallel to e which takes all values from 0 to 2 .

CONCLUSIONS

We have had the hydrodynamic equations for binary gas mixture from Boltzmann equations:
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where we have new term showing the relaxation due to differences of velocities between both gases in equations of

motion, by comparing equations for simple gas. Further, new two terms due to the relaxations of velocities and
temperatures are obtained in equations of energy. Uﬁfﬁ)v KQK) and K\(;K) are shown in (13) and (16). These equations

are similar to the former ones of S.K. in the form.

SUMMERY

Hydrodynamic equations for binary gas mixture are derived from Boltzmann equations. Equations of
continuity for each gas are of the same form for simple gas. Equations of motion have additional terms of velocity
relaxation in comparison with simple gas, which are linear in difference of velocities of each gas. Energy equations
have two additional terms, one of which is due to velocity relaxation between two gases. The other is that due to
temperature relaxation between those.
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